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Dominant Double Rotation in the 
Thermally Induced 1,2,4-Trimethylspiropentane 
Geometric Isomerization 

Sir: 

The thermal geometric isomerization of vicinal centers 
in cyclopropane occurs predominantly by a double inversion 
process1 which has been predicted to occur in a conrotatory 
fashion.2 Monosubstitution of both inverting centers by small 
alkyl groups appears to attenuate the double inversion process 
such that a near-randomly-closing biradical results.3 

Spiropentane undergoes geometric isomerization4 by pe­
ripheral bond fission5 faster than structural isomerization6 to 
methylenecyclobutane. Double inversion has now been ob­
served with 1,2,4-trimethylspiropentane, but a factor analysis 

Chart I. Rate constants (X 106/s) for the interconversion of the four 
1,2,4-trimethylspiropentanes at 561.7 K and 150 Torr: SI = single 
inversion; DI = double inversion. The equilibrium concentrations are 
calculated. 

fe, = 2.55 

DI at C1C2 or C4 rotation 

fe, = 4.69 
1 l>^' 

TM 
[0.435]eq 

TP 
[0.236] eq 

SI 
at 
C, 

fe4 = 4.7 

t>=f 
CA 

[0.222]eq 

•v 

few = 4.69 

DI at C1C2 

S 

fe12 = 9.73 
CS 

[0.107]eq 

suggests that face to face biradicals are being formed and that 
conrotation occurs with the trans isomers and disrotation oc­
curs with the cis isomers. 

The fact is that the four 1,2,4-trimethylspiropentanes7 in-
terconvert at 561.7 K with the rate constants (X 106/s) indi­
cated in Chart I which in a Runge-Kutta numerical integration 
of the appropriate differential equations reproduces the ex­
perimental data at roughly 20% reaction.8 The rate constants 
satisfy the three microscopic reversibility conditions.9 

From the data it is clear that both double and single inver­
sion is occurring but trans to trans or cis to cis conversions 
(double inversion—or, less likely, C4 epimerization with TM 
and TP10) occur as fast as the two single inversion process, in 
each case suggesting a preference for double inversion. 

The magnitude of the preference for double inversion is 
substantial if the data are dissected into contributing factors. 
A rate retardation factor,/+p , for generating 1,4-proximal, as 
opposed to medial or distal, methyl relationships is 0.345 ± 
0.01 from the rate constant ratio k$/ki or k%/k\\. A rate re­
tardation factor,/_p, for destroying 1,4-proximal, as opposed 
to medial or distal, methyl relationships is 0.61 ± 0.04 from 
the rate constant ratio k7/k9 or kb/k\0.

u From each spiro­
pentane isomer there are two ratios of double to single inver­
sion, and in each case proximal 1,4 relationships are being 
generated and destroyed, and cis relationships are being gen­
erated for which a rate retardation factor, f+c, relative to 
making a trans relationship may be defined. Any given rate 
ratio can result from an inherent preference for double vs. 
single inversion, D/S, modified by the rate-retarding steric 
factors,/+ p , /- .p , and/ + c . 1 3 For any value of/+c, the four D/S_ 
ratios from the trans isomers are within 2% of one another, and 
the same is true of the D/S ratios from the cis isomers (see 
Table 1), lending confidence to the notion that steric factors 
are being properly considered. The cis factor, f+c, determines 
the absolute values of the D/S ratios, and Table I gives the D/S 
ratios for various f+c factors.14 

If the double inversion process is conrotatory, steric effects 
should favor more double inversion from the trans isomers than 
from the cis isomers; however, this can be true only if there is 
a steric preference for generating a cis vicinal relationship, i.e., 
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Table I. Ratio of Double to Single Inversion in the Pyrolyses of the 
Trimethylspiropentanes after Correction for Steric Factors 

Starting material 

TM — TP/CS 
T M - T P / C A 
T P - T M / C A 
T P - T M / C S 

(D/S)T 
C A - CS/TM 
CA — CS/TP 
C S - C A / T M 
C S - C A / T P 

(D/S)c 

D/S 
(/Vc = 0.5) 

1.48 
1.52 
1.55 
1.52 
1.52 ±0.02 
5.70 
5.84 
5.55 
5.70 
5.70 ±0.07 

D/S 
(Ac = 0.95) 

2.81 
2.90 
2.94 
2.88 
2.88 ± 0.04 
3.00 
3.07 
2.93 
3.00 
3.00 ± 0.04 

D/S 
(/+c =1.5) 

4.45 
4.57 
4.65 
4.55 
4.55 ±0.05 
1.90 
1.95 
1.85 
1.93 
1.91 ±0.03 

f+c > 1. It would seem more likely that/+c ^ 1 but more like 
unity since there is only a factor of 0.5 in the thermodynamic 
preference and the transition state for closure must come early 
suggesting/+c ^ 1. Since (D/S)T ^ (D/S)c when/+c ^ 1, 
it appears that the trans isomer undergoes double inversion by 
conrotation (con) and the cis isomer undergoes double inver­
sion by disrotation (dis). It therefore appears that the pro­
pensity for double inversion in the trans- and m-dimethyl-
spiropentanes results solely from the sterically most favorable 
pathway, i.e., outward rotation of both methyl groups in each 
case. However, in each case these outward rotations should 

4 ^ ^>cj71 

produce the same IT cyclopropane; yet this species must reclose 
to trans isomers faster when generated from trans isomers or 
faster to cis isomers when generated from cis isomers. A hy­
pothesis which will rationalize this divergent behavior for the 
same species is a dynamical one advanced by Jean15 in calcu­
lations on the cyclopropane double inversion process: once the 
double rotation starts, either con or dis, the motion continues 
along this trajectory through the past the ir biradical to the 
double inversion product. 
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Novel Coordination Chemistry 
and Catalytic Properties of Cationic 
l,2-Bis(diphenylphosphino)ethanerhodium(I) 
Complexes 

Sir: 

Considerable interest has recently been focussed on cationic 
rhodium(I) complexes containing tertiary phosphine ligands, 
particularly in the context of such complexes as highly effective 
asymmetric hydrogenation catalysts.1 While the most extensive 
studies on the coordination chemistry and catalytic properties 
relate to such complexes containing monodentate tertiary 
phosphine ligands, for example those derived from 
[Rh(PR3)2(diene)]+ [where diene = norbornadiene (nor) or 
1,5-cyclooctadiene],2"7 the highest optical yields to date (>95% 
enantiomeric excess in the hydrogenation of prochiral a-ace-
tamidoacrylic acids) have been achieved with cationic rhodium 
catalysts containing chiral chelating diphosphine ligands, 
notably l,2-bis(o-anisylphenylphosphino)ethane.8 Accord­
ingly, it seemed of some importance to examine more thor­
oughly the basic coordination chemistry and catalytic prop­
erties of such cationic rhodium diphosphine chelate complexes. 
We report here initial results of such studies on [Rh(diphos)-
(nor)]+ (1), where diphos = l,2-bis(diphenylphosphino)-
ethane, and on various other cationic rhodium-diphos com­
plexes derived therefrom by hydrogenation. Unexpectedly, the 
chemistry of these complexes was found to differ in several 
important respects, including those bearing on their activity 
as hydrogenation catalysts, from that of the corresponding 
complexes containing monodentate phosphine ligands, e.g., 
[Rh(PPh3)2(nor)]+. 

In methanolic solution, [Rh(diphos)(nor)]+,9 was found to 
react rapidly with precisely 2.0 mol of H2/Rh (confirmed by 
spectral titration) according to the stoichiometry of eq 1, 
quantitatively yielding norbornane (confirmed by NMR) and 
a cationic Rh(I) complex of composition (apart from possible 
solvent coordination) [Rh(diphos)]+ (2) (Xmax 432 nm (emax 
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